azb

South Azerbaijani

ISO 639-3: azb I L
317,640 Vocabulary
4.20x Best Compression
0.8242 Best Isotropy

Performance Dashboard

Performance dashboard for South Azerbaijani

Quick Start

Tokenizer

from wikilangs import tokenizer

tok = tokenizer(date='latest', lang='azb', vocab_size=32000)
tokens = tok.tokenize("Your text here")
print(tokens)

N-gram Model

from wikilangs import ngram

ng = ngram(date='latest', lang='azb', gram_size=3)
score = ng.score("Your text here")
predictions = ng.predict_next("Start of", top_k=5)

Markov Chain

from wikilangs import markov

mc = markov(date='latest', lang='azb', depth=3)
text = mc.generate(length=50)
print(text)

Vocabulary

from wikilangs import vocabulary

vocab = vocabulary(date='latest', lang='azb')
info = vocab.lookup("word")
print(info)  # frequency, IDF, rank

Embeddings

from wikilangs import embeddings

emb = embeddings(date='latest', lang='azb', dimension=64)
vec = emb.embed_word("word")
sent_vec = emb.embed_sentence("A sentence", method='rope')

Available Models

Model Type Variants Description
Tokenizers 8k, 16k, 32k, 64k BPE tokenizers with different vocabulary sizes
N-gram (Word) 2, 3, 4, 5-gram Word-level language models
N-gram (Subword) 2, 3, 4, 5-gram Subword-level language models
Markov (Word) Depth 1-5 Word-level text generation
Markov (Subword) Depth 1-5 Subword-level text generation
Vocabulary Word dictionary with frequency and IDF
Embeddings 32d, 64d, 128d Position-aware word embeddings

Model Evaluation

Tokenizer Performance

Compression ratios and token statistics across vocabulary sizes. Higher compression means fewer tokens for the same text.

Tokenizer compression ratios

N-gram Model Evaluation

Perplexity and entropy metrics across n-gram sizes. Lower perplexity indicates better predictive performance.

N-gram perplexity

Markov Chain Evaluation

Entropy and branching factor by context depth. Lower entropy means more predictable text generation.

Markov chain entropy

Vocabulary Analysis

Word frequency distribution and Zipf's law analysis.

Zipf's law distribution
Top 20 words

Embeddings Evaluation

Isotropy and vector space quality metrics. Higher isotropy indicates more uniformly distributed embeddings.

Embedding isotropy

Full Research Report

Access the complete ablation study with all metrics, visualizations, and generated text samples on HuggingFace.

View Full Report on HuggingFace