cu

Church Slavonic словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ

ISO 639-1: cu ISO 639-3: chu I A
0 Words in Vocabulary

Sample Text

Sample excerpts from Church Slavonic Wikipedia articles.

Хрїстъ Вседержитель Сінайскїѧ обители и восковая икона срѣ́дꙋ VI вѣка въ Кѡнстантїнополѣ сотворенная и въ 1962 гѡдѣ ѡбновлєннаѧ ѥсть · Сїѧ же и древнѣйшїй самозрачный образъ Їиса Хрїста ѥстъ ⁙
Ри́га и латвїискꙑ Rīga · стольнъ градъ Латвїѩ ѥстъ · ꙁьдана ѥстъ рѣцѣ Ꙁападьнѣ Дьвинѣ ⁙ Людии 709.145 обитаѥтъ ⁙ Основана 1201 лѣта ѥстъ нѣмьцкомь єпископомь Албєртомь · а помѣновєна ꙁапрьва лѣтописи 1198 лѣта ѥстъ ⁙ Градъ положєниѥмь самостоꙗтєл҄ьнѫ властьнѫ ѥдиницѫ сѧ одѣлꙗѥтъ

Most Common Words

The 20 most frequently used words in Church Slavonic Wikipedia.

Top 20 words in Church Slavonic

Performance Dashboard

Key metrics for all model types at a glance.

Performance dashboard for Church Slavonic

Quick Start

Tokenizer

from wikilangs import tokenizer

tok = tokenizer(date='latest', lang='cu', vocab_size=32000)
tokens = tok.tokenize("Your text here")
print(tokens)

N-gram Model

from wikilangs import ngram

ng = ngram(date='latest', lang='cu', gram_size=3)
score = ng.score("Your text here")
predictions = ng.predict_next("Start of", top_k=5)

Markov Chain

from wikilangs import markov

mc = markov(date='latest', lang='cu', depth=3)
text = mc.generate(length=50)
print(text)

Vocabulary

from wikilangs import vocabulary

vocab = vocabulary(date='latest', lang='cu')
info = vocab.lookup("word")
print(info)  # frequency, IDF, rank

Embeddings

from wikilangs import embeddings

emb = embeddings(date='latest', lang='cu', dimension=64)
vec = emb.embed_word("word")
sent_vec = emb.embed_sentence("A sentence", method='rope')

Available Models

Model Type Variants Description
Tokenizers 8k, 16k, 32k, 64k BPE tokenizers with different vocabulary sizes
N-gram (Word) 2, 3, 4, 5-gram Word-level language models
N-gram (Subword) 2, 3, 4, 5-gram Subword-level language models
Markov (Word) Depth 1-5 Word-level text generation
Markov (Subword) Depth 1-5 Subword-level text generation
Vocabulary Word dictionary with frequency and IDF
Embeddings 32d, 64d, 128d Position-aware word embeddings

Model Evaluation

Tokenizer Performance

Compression ratios and token statistics across vocabulary sizes. Higher compression means fewer tokens for the same text.

Tokenizer compression ratios

N-gram Model Evaluation

Perplexity and entropy metrics across n-gram sizes. Lower perplexity indicates better predictive performance.

N-gram perplexity

Markov Chain Evaluation

Entropy and branching factor by context depth. Lower entropy means more predictable text generation.

Markov chain entropy

Vocabulary Analysis

Word frequency distribution and Zipf's law analysis.

Zipf's law distribution
Top 20 words

Embeddings Evaluation

Isotropy and vector space quality metrics. Higher isotropy indicates more uniformly distributed embeddings.

Embedding isotropy

Key Metrics

Best Compression 4.94x Characters per token (higher is better)
Best Isotropy 0.2434 Embedding uniformity (higher is better)
Vocabulary Size 0 Unique words in training data

Full Research Report

Access the complete ablation study with all metrics, visualizations, and generated text samples on HuggingFace.

View Full Report on HuggingFace